BEDLAM: A Synthetic Dataset of Bodies Exhibiting Detailed Lifelike Animated Motion
2023
Conference Paper
ps
We show, for the first time, that neural networks trained only on synthetic data achieve state-of-the-art accuracy on the problem of 3D human pose and shape (HPS) estimation from real images. Previous synthetic datasets have been small, unrealistic, or lacked realistic clothing. Achieving sufficient realism is non-trivial and we show how to do this for full bodies in motion. Specifically, our BEDLAM dataset contains monocular RGB videos with ground-truth 3D bodies in SMPL-X format. It includes a diversity of body shapes, motions, skin tones, hair, and clothing. The clothing is realistically simulated on the moving bodies using commercial clothing physics simulation. We render varying numbers of people in realistic scenes with varied lighting and camera motions. We then train various HPS regressors using BEDLAM and achieve state-of-the-art accuracy on real-image benchmarks despite training with synthetic data. We use BEDLAM to gain insights into what model design choices are important for accuracy. With good synthetic training data, we find that a basic method like HMR approaches the accuracy of the current SOTA method (CLIFF). BEDLAM is useful for a variety of tasks and all images, ground truth bodies, 3D clothing, support code, and more are available for research purposes. Additionally, we provide detailed information about our synthetic data generation pipeline, enabling others to generate their own datasets. See the project page: https://bedlam.is.tue.mpg.de/.
Award: | (Highlight Paper) |
Author(s): | Black, Michael J. and Patel, Priyanka and Tesch, Joachim and Yang, Jinlong |
Book Title: | IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR) |
Pages: | 8726--8737 |
Year: | 2023 |
Month: | June |
Department(s): | Perceiving Systems |
Bibtex Type: | Conference Paper (inproceedings) |
Event Name: | CVPR 2023 |
Event Place: | Vancouver |
Award Paper: | Highlight Paper |
Links: |
pdf
project CVF code |
BibTex @inproceedings{Black_2023_CVPR, title = {{BEDLAM}: A Synthetic Dataset of Bodies Exhibiting Detailed Lifelike Animated Motion}, author = {Black, Michael J. and Patel, Priyanka and Tesch, Joachim and Yang, Jinlong}, booktitle = {IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)}, pages = {8726--8737}, month = jun, year = {2023}, doi = {}, month_numeric = {6} } |