Header logo is mms


2019


no image
A special issue on hydrogen-based Energy storage

Hirscher, M.

{International Journal of Hydrogen Energy}, 44, pages: 7737, Elsevier, Amsterdam, 2019 (misc)

DOI [BibTex]

2019

DOI [BibTex]


no image
Reconfigurable nanoscale spin wave majority gate with frequency-division multiplexing

Talmelli, G., Devolder, T., Träger, N., Förster, J., Wintz, S., Weigand, M., Stoll, H., Heyns, M., Schütz, G., Radu, I., Gräfe, J., Ciubotaru, F., Adelmann, C.

2019 (misc)

Abstract
Spin waves are excitations in ferromagnetic media that have been proposed as information carriers in spintronic devices with potentially much lower operation power than conventional charge-based electronics. The wave nature of spin waves can be exploited to design majority gates by coding information in their phase and using interference for computation. However, a scalable spin wave majority gate design that can be co-integrated alongside conventional Si-based electronics is still lacking. Here, we demonstrate a reconfigurable nanoscale inline spin wave majority gate with ultrasmall footprint, frequency-division multiplexing, and fan-out. Time-resolved imaging of the magnetisation dynamics by scanning transmission x-ray microscopy reveals the operation mode of the device and validates the full logic majority truth table. All-electrical spin wave spectroscopy further demonstrates spin wave majority gates with sub-micron dimensions, sub-micron spin wave wavelengths, and reconfigurable input and output ports. We also show that interference-based computation allows for frequency-division multiplexing as well as the computation of different logic functions in the same device. Such devices can thus form the foundation of a future spin-wave-based superscalar vector computing platform.

link (url) [BibTex]

link (url) [BibTex]


no image
Hydrogen Energy

Hirscher, M., Autrey, T., Orimo, S.

{ChemPhysChem}, 20, pages: 1153-1411, Wiley-VCH, Weinheim, Germany, 2019 (misc)

link (url) DOI [BibTex]

link (url) DOI [BibTex]

2002


no image
Pressure Isotherms of Hydrogen Adsorption in Carbon Nanostructures

Chen, X., Dettlaff-Weglikowska, U., Haluska, M., Hulman, M., Roth, S., Hirscher, M., Becher, M.

In Making Functional Materials with Nanotubes, pages: Z9.11.1-Z9.11.6, Materials Research Society Symposium Proceedings, MRS, Boston [Mass.], 2002 (inproceedings)

[BibTex]

2002

[BibTex]


no image
Photoelektronenspektroskopie an deponierten Nickelclustern

Wiesner, B.

Würzburg, 2002 (misc)

[BibTex]


no image
Hydrogen Storage in Carbon SWNTs: Atomic or Molecular?

Haluska, M., Hirscher, M., Becher, M., Dettlaff-Weglikowska, U., Chen, X., Roth, S.

In Structural and Electronic Properties of Molecular Nanostructures, pages: 601-605, AIP Conference Proceedings, AIP, Kirchberg, Tirol [Austria], 2002 (inproceedings)

[BibTex]

[BibTex]


no image
Hydrogen Storage in Nanostructured Carbon Materials at Room Temperature

Chen, X., Dettlaff-Weglikowska, U., Haluska, M., Hirscher, M., Becher, M., Roth, S.

In Structural and Electronic Properties of Molecular Nanostructures, pages: 597-600, AIP Conference Proceedings, AIP, Kirchberg, Tirol [Austria], 2002 (inproceedings)

[BibTex]

[BibTex]


no image
Micromagnetism and the microstructure of the cell walls in Sm2Co17 based permanent magnets

Goll, D., Hadjipanayis, G. C., Kronmüller, H.

In Proceedings of the 17th International Workshop on Rare-Earth Magnets and their Applications, pages: 696-703, Rinton Press, Newark, Delaware, USA, 2002 (inproceedings)

[BibTex]

[BibTex]


no image
Ab-initio study of the influence of epitaxial strain on magnetoelastic properties

Komelj, M., Fähnle, M.

In Atomistic Aspects of Epitaxial Growth, pages: 439-447, NATO Science series: Series 2, Mathematics, Physics, and Chemistry, Kluwer Academic Publishers, Dassia, Corfu [Greece], 2002 (inproceedings)

[BibTex]

[BibTex]